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Replication seems a sensible way to assess whether a scientific result is right. The intuition is clear: if a result
is right, you should get a similar answer when repeating the work; if it it’s wrong, your answer should be quite
different. Statisticians have devised numerous statistical tests for deciding whether a replication passes or fails
thus validating of refuting the original result. I simulate many of these tests across a range of conditions. For
exact replications, simple significance testing works fine as a validation test, but when replicas diverge from the
original studies no test works well. Much of the replication literature focuses, perhaps unwittingly, on methods
for testing whether the studies are similar; these tests work quite poorly under all conditions analyzed here.

Introduction

The basic replication rationale goes something like this: (1) many published papers are wrong; (2) this is a
serious problem the community must fix; and (3) systematic replication is an effective solution. (In recent
months, I’ve seen an uptick in pre-registration as another solution. That’s a topic for another day.) In this
post, I focus on the third point and ask: viewed as a statistical test, how well does replication work; how well
does it tell the difference between valid and invalid results?

I consider a basic replication scheme in which each original study is repeated once.

Various authors have proposed tests for deciding whether a replication succeeds or fails. These include
significance testing of the replica study, seeing whether the observed effect size of one study falls in the
confidence or prediction interval of the other, checking whether the confidence or prediction intervals of
the two studies overlap, significance testing of the studies combined via meta-analysis, and comparing the
observed effect size of the replica study with a “small telescope” threshold derived from the smallest true
effect size the original study could have plausibly detected.

I simulate these rules (and more) across many replication conditions and compute false positive and false
negative rates across a range of conditions. The simulations vary the sample size from 10 to 1000 and true
effect size from 0 to 1; in total, I simulate 14,641 conditions each with 104 simulated replications, for a grand
total of almost 150 million simulated instances.

A replication is exact if the two studies are sampling the same population and near-exact if the populations
differ slightly. This is an obvious replication scenario. You have a study that you think may be a false
positive; to check it out, you repeat the study, typically with a larger sample size, taking care to ensure that
the replica closely matches the original.

A replication is inexact if the two studies are sampling very different populations. This scenario seems
disconnected from the goal of validating an existing study. Since the populations are different, there’s
no reason to expect the studies to get similar answers and little basis for declaring a study invalid if the
replication fails. What motivates this scenario, I think, is generalizability not validity. You have a study
that demonstrates an interesting effect in a limited setting and want to know whether it generalizes to other
settings.

Significance testing of the replica works fine as a validation test for exact and near-exact replications, but
error rates increase rapidly as the populations diverge. All other tests have excessive error rates under all
conditions I analyzed. All tests have unacceptable error rates when used to check whether the original and
replica studies are similar.

The software supporting this post is in my repwr GitHub repository. A document with technical details will
soon be available in html and pdf on the GitHub Pages site associated with this repository.
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Literature

Here are the main papers and blog posts that led to this work.

• The Science paper by the Open Science Collaboration “Estimating the reproducibility of psychological
science”, accessible here if you have a Science account, Gilbert et al’s Comment, the authors’
Response, Uri Simonsohn’s blog post commenting on the paper and response, and Daniel Lakens’s post
on the response

• The Many Labs paper by Klein and many others, the many published comments, and Uri Simonsohn’s
post

• Uri Simonsohn’s Small Telescopes paper, and posts on evaluating replications, errors in evaluating repli-
cations, setting replication sample sizes, accepting the NULL, estimating effect size, and overestimating
effect size

• Daniel Lakens’s posts on capture percentages and cost/benefit analysis of replications
• Lebel et al’s A Guide to Evaluate Replications
• Anderson and Maxwell’s paper on replication goals and the Replication Network blog post commenting

on the paper
• Papers on prediction intervals by Patil, Peng, and Leek and Stanley and Spence
• Sabeti’s counterpoint in the Boston Globe
• Several articles from the Sackler Colloquium on Improving the Reproducibility of Scientific Research

published in PNAS, notably Fanelli’s opinion piece and Shiffrin, Börner, and Stigler’s big picture view

The Simulation

The software first simulates studies across a range of conditions, then combines pairs of studies into pairwise
replications, applies rules (called measures) for deciding which pairwise replications pass, summarizes the
results as counts and pass rates, and finally computes true and false positive and negative rates for measures
and conditions of interest.

The studies are simple two group comparisons parameterized by sample size n and population effect size dpop

(dpop ≥ 0). For each study, I generate two groups of random numbers, each of size n. One group, group0,
comes from a standard normal distribution with mean = 0; the other, group1, is standard normal with
mean = dpop ≥ 0. I then calculate basic statistics of interest, most notably the standardized observed effect
size, dsdz, aka Cohen’s d, as the mean of group1 minus the mean of group0 divided by the pooled standard
deviation of the two groups. The software simulates many studies (default 104) for each combination of n
and dpop.

When I need to be pedantic, I use the terms study instance for each individual study and study set for the
ensemble of study instances for a given combination of n and dpop.

The program varies n from 10 to 1000 and dpop from 0 to 1. When analyzing results, I interpolate to get
values that weren’t simulated directly.

To generate pairwise replications, I consider all (ordered) pairs of study sets. For each pair, the software
permutes the instances of each study, then combines the instances row-by-row to get pairwise replication
instances. It’s convenient to think of the first study of the pair as the original and the second as the replica.

A pairwise replication set is the ensemble of pairwise replication instances for a given pair of study sets. Four
variables parameterize each pairwise replication set: n1, n2, d1pop, d2pop. These are, naturally enough, the
sample and population effect sizes for the two study sets.

After forming the pairwise replications, I apply measures, i.e., rules for deciding which replications pass. Each
measure takes a pairwise replication set as input and returns a vector of boolean values telling which instances
pass or fail. The result is a boolean matrix whose rows represent instances and columns represent measures.

This post focuses on eight measures that seem most important.

• sig2 - the second study of the pair has a significant p-value
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• sigm - the fixed effect meta-analysis of the studies has a significant p-value
• d1.c2 (resp. d2.c1 ) - d1sdz (resp. d2sdz), the standardized observed effect size (aka Cohen’s d) of the first

(resp. second) study is in the confidence interval of the second (resp. first) study; my implementation
of confidence intervals is based on Uri Simonsohn’s code supporting this post

• d1.p2 (resp. d2.p1 ) - d1sdz (resp. d2sdz) is in the prediction interval of the second (resp. first) study;
my implementation of prediction intervals adapts code from David Stanley’s predictionInterval package

• c1.c2 (resp. p1.p2 ) - the confidence (resp. prediction) intervals of the two studies overlap

All measures assume that the first study is significant (sig1 in my notation) and the observed effect sizes of
the two studies have the same sign (both positive or both negative).

I briefly examine Uri Simonsohn’s small telescopes method (d2.scp1 in my notation) from his paper and post.
My implementation is based on Uri’s code supporting that post. Small telescopes, unlike the others, assumes
that sig2 holds. For this reason, it needs a separate analysis.

The software summarizes the results by counting the number of positive results for each measure, taking into
account the assumptions in the preceding paragraphs, and then converts the counts into pass rates. The
final step is to convert pass rates into true positive, false positive, true negative, and false negative rates.
This requires a definition of true and false instances, which in turn requires an explicit statement as to which
replication instances represent replications that should succeed vs. ones that should fail.

Correctness Criteria

I found no concise, rigorous definition of replication correctness anywhere. Many authors rely on some variant
of “A replication should succeed if my method says so”. It’s impossible to define error rates with such circular
definitions.

Replication researchers study two aspects of correctness.

1. The most basic concern is that the original study is a false positive.
2. The other concern is that the observed effect sizes of the two studies are inconsistent with each other.

This might mean that the population effect sizes are different or that one result is an outlier.

The first concern seems sensible (at least, as sensible as any other use of the null hypothesis testing framework).
The second concern baffles me: if the two studies are sampling different populations or one is an outlier, why
does this invalidate the first study?

I’m tempted to ignore the second concern, but most proposed replication methods address it. Sadly, I’m
stuck with it for purposes of this post.

Here are the precise technical definitions.

1. non-zero - a replication instance is true if d1pop 6= 0, i.e., the population effect size of the first study is
non-zero

2. same-effect - a replication instance is true if d1pop = d2pop, i.e., both studies have the same population
effect size; with tolerance δ, a replication instance is true if abs(d1pop − d2pop) ≤ δ, i.e., the two
population effect sizes differ by at most δ

Note that these criteria depend only on the population effect sizes.

Nomenclature

I’ve already introduced most of my nomenclature. Here is a concise reprise.

Studies

• study instance is a single simulated study
• n is the sample size
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• dpop is the population effect size
• dsdz is the standardized observed effect size (aka Cohen’s d)
• study set is the set of study instances for a given n and dpop

Pairwise replications

• pairwise replication instance (or simply replication instance) is an ordered pair of study instances
• s1 and s2 refer to the first and second study of the pair
• n1, d1pop, d1sdz are the sample size, population effect size, and Cohen’s d of the first study
• n2, d2pop, d2sdz are the sample size, population effect size, and Cohen’s d of the second study
• pairwise replication set (or simply replication set) is the set of replication instances for a given n1, n2,
d1pop, and d2pop

• a replication instance or set is exact if d1pop = d2pop

• true and false refer to the answers given by correctness criteria when applied to replication instances:
true instance is an instance for which the criterion returns true; false instance is one for which the
criterion returns false

• positive and negative refer to the results of applying measures to replication instances: positive instance
is an instance for which the measure returns true; negative instance is one for which the measure returns
false

• true positive, false positive, true negative, and false negative combine the notions of true vs. false and
positive vs. negative instance. For a given correctness criterion and measure
– true positive instance is a replication instance for which the correctness criterion and measure both

return true
– false positive instance is an instance for which the correctness criterion is false, but the measure

returns true
– true negative instance is an instance for which the correctness criterion and measure both return

false
– false negative instance is an instance for which the correctness criterion is true, but the measure

returns false

Correctness criteria

• non-zero is true if d1pop = 0
• same-effect is true if d1pop = d2pop; with tolerance δ, same-effect is true if abs(d1pop − d2pop) ≤ δ
• for non-zero

– false positive occurs when d1pop = 0, but the measure returns true
– false negative occurs when d1pop 6= 0, but the measure returns false

-for same-effect with tolerance δ - false positive occurs when abs(d1pop − d2pop) > δ, but the measure returns
true - false negative occurs when abs(d1pop − d2pop) ≤ δ, but the measure returns false

To simplify the presentation

• s1 (the first study of the replication instance) represents the original study and s2 (the second study)
represents the replica

• error rates are relative to sig1 ; e.g., an error rate of 5% means 5% of the replications satisfying sig1
exhibit the error

Graph Types

The parameter space is vast, because it’s possible to vary each of the four parameters (n1, n2, d1pop, d2pop)
across a considerable range. I use several kinds of graphs to present the data in a comprehensive, yet concise,
manner.

1. line graphs - simple and intuitive, I think, but not good at showing data that varies across many
parameters

2. heatmaps - still reasonably intuitive and somewhat better at depicting multiple parameters
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3. rate-vs-rate scatter plots - able to display error rates across large swaths of parameter space but with
less parameter resolution and perhaps less intuitive clarity

4. aggregate line graphs - same data as rate-vs-rate scatter plots but for fewer measures and with better
parameter resolution

Results

Replication used for validation

When replication is used to validate a study, non-zero is the correctness criterion that matters. I first present
results for exact replications, then inexact, and finally near-exact.

Exact replications

Figures 1-4 show false positive rates for two values of n1 (20 and 40) and a range of values for n2. The
smallest n2 in each case satisfies the recommendation in Uri Simonsohn’s post on the 90x75x50 heuristic
that n2 = 2.5× n1 is big enough. The x-axis shows all four parameters using d1, d2 as shorthand for d1pop,
d2pop to conserve space. d1pop = d2pop = 0 throughout because this is the only way to get false positives for
non-zero with exact replications.

The first two figures are line graphs with false positive rate along the y-axis; these graphs use color and
line width to distinguish the measures. The latter two are heatmaps with measures along the y-axis; these
plots use color (shades of red and blue) to depict false positive rate; the switch from red to blue is set at the
conventionally accepted threshold of 0.05 for false positives.
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The only measures with acceptable false positive rates across most of the parameter range are sig2 and d1.c2.

Plotting false negatives is more tiresome, because we can also vary d1pop (and simultaneously d2pop, of course).
Figures 5-6 are heatmaps of false negative rates for the same range of n1, n2 (but with a coarser grid of n2
values) and for d1pop = d2pop varying over {0.2, 0.5, 0.8}. Each heatmap shows all three values of dpop; the
dark vertical lines visually split each plot into separate “panels” for each dpop. The red-to-blue transition is
set at the conventionally accepted threshold of 0.20 for false negatives.

As one would expect, performance improves as sample and effect sizes grow. The heatmaps for the larger sizes
show a lot of red, telling us that many measures have acceptable false negative rates under these conditions.

For a measure to be usable, both error rates must be acceptable. Let’s compare the heatmaps for false
positives and false negatives - figures 3-4 and 5-6. The only measure that is mostly red across all four figures
is sig2 ; d1.c2, which looked good for false positives, is consistently bad for false negatives.
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So far so good, but I’ve only shown data for a few values of n1. To see more conditions, I use a rate-vs-rate
plot, inspired by receiver operating characteristic (ROC) curves, to plot false negative vs. false positive rates
for a large range of conditions. See figure 7. The data in this figure extends the cases shown above: n1 varies
from 20-160 in steps of 20, n2 is 2.5 or 5× n1, d1pop and d2pop range from 0 to 1 in steps of 0.1 with the
constraint d1pop = d2pop. Each point shows the mean false negative vs. mean false positive rate for these
conditions grouped by n1, n2. The rationale for grouping by n1, n2 is they are the only observable parameters.
The dashed lines demark the conventionally acceptable error rates: 0.05 for false positives and 0.2 for false
negatives; the bottom left hand corner is the region where both error rates are acceptable.

The message clear: sig2 is the only measure with points falling in the acceptable range.

Boiling it down: for exact replications, sig2 is the only game in town. Its false positive rate is the significance
level divided by 2 (the factor of 2 because it’s one-sided). The false negative rate is 1− power (the correlation
of these statistics across the entire dataset is 0.99, data not shown).

Inexact replications

For inexact replications there are more cases to consider since d1pop and d2pop can vary independently. I’ll
jump straight to rate-vs-rate plots to cover the ground succinctly using the same values of n1 and n2 as
above, namely, n1 varies from 20-160 in steps of 20, and n2 is 2.5 or 5× n1.

Figures 8 shows the results: error rates are dreary in all conditions.
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Near exact replications

It may seem odd that sig2 works fine for non-zero in exact replications but so poorly in inexact ones. What
if we try near exact replications, ones where d1pop and d2pop differ slightly? Figure 9 shows the results for
nearness ranging from exact to fully inexact with steps in between. The figure is a rate-vs-rate plot that
shows a single measure (sig2 ) across the various nearness values.

The results are discouraging. It doesn’t take much separation to exceed acceptable error rates. When d1pop

and d2pop differ by as little as 0.05, about half the points lie beyond the acceptable 0.05 false positive rate;
by time we get to 0.2, all points are bad.

What’s going on is a consequence of power. The data in the rate-vs-rate plots vary n2 from 50 to 800. With
d2pop = 0.05, sig2 has 12% power at n2 = 500 and 17% at n2 = 800. This is anemic from the usual power
standpoint but is plenty to drive sig2 ’s false positive rate beyond 0.05. Figure 11 illustrates the point by
graphing sig2 ’s mean false positive rate grouped by n2 vs. n2. False positive rate is fine across the whole
graph for exact and until n2 > 400 or so for nearness = 0.05, but quickly exceeds the acceptable error
threshold for larger separations.
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Replication used to check effect size

I now turn to the second correctness criterion, same-effect, which tests whether the population effect sizes
of the replica and original studies are similar. Figures 11-14 show rate-vs-rate plots for two values of δ (0.1
or 0.5), and for fully inexact replications (figures 11-12) and assuming d2pop ≤ d1pop (figures 13-14). The
rationale for showing δ = 0.1 is this is the largest nearness value with any acceptable points in the non-zero
analysis; the rationale for δ = 0.5 is this is the difference between small and large effect sizes in Cohen’s d
terminology. The assumption d2pop ≤ d1pop reflects the view that investigators, consciously or not, tend to
do original studies with populations that best exhibit the phenomenon of interest
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The results are bad in all cases. Error rates are better for δ = 0.5 and with d2pop ≤ d1pop but not enough.

Small telescopes

Uri Simonsohn’s small telescopes method combines both correctness criteria in a single test. In my notation,
d2.scp1 is positive if

1. sig2 is positive (presumably to test non-zero) and
2. d2sdz, the replica’s observed effect size, exceeds a threshold deemed to be the smallest effect size likely

to be observed if same-effect is true.

Figures 15-18 compare sig2 and d2.scp1 for the two correctness criteria. The figures reuse conditions from
previous sections: for non-zero, I use nearness of 0.1; for same-effect, I use δ = 0.5 and with d2pop ≤ d1pop.
Figures 15 and 17 are rate-vs-rate plots; figures 16 and 18 show the same data as aggregate line graphs.
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The differences are very small: small telescopes has almost no effect over and above sig2.

Discussion

Replication is a poor statistical test. It works as a validation test only when the original and replica studies
are sampling nearly identical populations. Methods for testing whether the populations are similar work
poorly under all conditions analyzed.

These dismal results are not surprising once we examine replication in a statistical testing framework. When
used for validation, we’re drawing inferences about the original study from properties of the replica; it stands
to reason this will only work if the two studies are very similar. When used to compare the two populations,
we’re trying to accurately estimate the difference between two population effect sizes, a problem known to
require very large samples - n > 3000 by Uri Simonsohn’s calculations.
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I see several ways my results might be wrong. Perhaps I defined the wrong correctness criteria, or set the
error thresholds too low, or analyzed the wrong conditions. I assumed throughout that all population effect
sizes were equally likely within the range studied; in particular, I didn’t consider publication bias which may
make smaller effect sizes more likely. Perhaps a more nuanced distribution would improve the results. The
ever-present danger of software bugs also lurks. If you see a mistake, please let me know and I’ll try to fix.

If correct, these results suggest that the replication movement needs to change goals or methods. If the
goal remains validation, it’s essential that each replica closely match its original study. This bodes ill for
large, systematic replication efforts, which typically prioritize uniformity over fidelity to run lots of studies at
reasonable cost.

An alternative is to switch gears and focus on generalizability. This would change the mindset of replication
researchers more than the actual work. Instead of trying to refute a study, you would assume the study is
correct within the limited setting of the original investigation and try to extend it to other settings. The
scientific challenge becomes defining good “other settings” - presumably there are many sensible choices –
and selecting studies that are a good fit for each. This seems a worthy problem in its own right that will
move the field forward no matter how many original studies successfully generalize.

I concluded a previous post with a paragraph that remains germane:

Good science drives the field forward; bad science is ephemeral. I know it’s aggravating to see
so much dreck get published, but it’s even more aggravating to see good statisticians and data
scientists agonizing over the ordure and spending so much effort trying to root out bad science.
We will do more good by helping good scientists do good science than by trying to slow down the
bad ones. Quoting the sage Oprah Winfrey (from BrainyQuote), “Be thankful for what you have;
you’ll end up having more. If you concentrate on what you don’t have, you will never, ever have
enough.”
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